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Solutions

1. Compute the real and imaginary parts of the following functions. Then, using the Cauchy�
Riemann equations, proceed to show that they are holomorphic over their domain of de�nition
and calculate their (complex) derivative.

(a) f(z) = ez over C. Writing z = x+ iy, we have:

f(z) = exeiy = ex(cos y + i sin y).

Identifying the real and imaginary parts:

u(x, y) = ex cos y, v(x, y) = ex sin y.

Checking the Cauchy�Riemann equations:

∂u

∂x
= ex cos y,

∂v

∂x
= ex sin y,

∂u

∂y
= −ex sin y,

∂v

∂y
= ex cos y.

Since ∂u
∂x

= ∂v
∂y

and ∂u
∂y

= − ∂v
∂x
, the function is holomorphic. The complex derivative is:

f ′(z) =
∂u

∂x
+

∂v

∂x
i = ex cos y + ex sin yi = ez.

(b) f(z) = z3 over C.

Writing z = x+ iy,

f(z) = (x+ iy)3 = x3 + 3ix2y − 3xy2 − iy3.

Identifying the real and imaginary parts:

u(x, y) = x3 − 3xy2, v(x, y) = 3x2y − y3.

Checking the Cauchy�Riemann equations con�rms that f is holomorphic. The complex
derivative is:

f ′(z) =
∂u

∂x
+

∂v

∂x
i = 3z2.

(c) f(z) = 1
z2

over C∗.

Writing z = x+ iy, we express f(z) as:

f(z) =
1

(x+ iy)2
=

1

x2 − y2 + 2ixy
.

Multiplying the numerator and denominator by the complex conjugate of the denominator:
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f(z) =
x2 − y2 − 2ixy

(x2 − y2)2 + 4x2y2
.

Identifying the real and imaginary parts:

u(x, y) =
x2 − y2

(x2 − y2)2 + 4x2y2
,

v(x, y) =
−2xy

(x2 − y2)2 + 4x2y2
.

Checking the Cauchy�Riemann equations, we con�rm that f is holomorphic. Finally,
computing the derivative: f ′(z) = − 2

z3
.

2. Show that the following functions are entire and calculate their derivative.

(a) cos(z) = eiz+e−iz

2

Note that eiz and e−iz are entire functions, as compositions of the entire function ez with
the entire function ±iz, so their sum is also entire. Di�erentiating, using the chain rule
for the derivative of the composition, we have:

cos′(z) =
(eiz)′ + (e−iz)′

2
=

ieiz − ie−iz

2
= −eiz − e−iz

2i
= − sin(z).

(b) cosh(z) = ez+e−z

2

Entire with analogous justi�cation as above. Di�erentiating:

cosh′(z) =
(ez)′ + (e−z)′

2
=

ez − e−z

2
= sinh(z).

(c) sinh(z) = ez−e−z

2

Entire with analogous justi�cation as above. Di�erentiating:

sinh′(z) = cosh(z).

3. The function f(z) = (Re(z))2 is not holomorphic because its imaginary part is zero and does
not satisfy the Cauchy�Riemann equations.

Writing z = x+ iy, we have: f(x+ yi) = x2, so

u(x, y) = x2, v(x, y) = 0.

Computing the partial derivatives:

∂u

∂x
= 2x,

∂u

∂y
= 0
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and
∂v

∂x
= 0,

∂v

∂y
= 0.

The Cauchy�Riemann equations require: ∂u
∂x

= ∂v
∂y
, ∂u

∂y
= − ∂v

∂x
. Substituting, we �nd:

2x = 0, 0 = 0.

The second equation holds, but the �rst requires x = 0, so it does not hold on all of C (i.e. the
domain of f ; in fact, this means that there is no open set on which the Cauchy�Riemann
equations hold for f). Therefore, f(z) is not holomorphic.

4. Given that f : Ω → C is holomorphic with real and imaginary parts u(x, y) and v(x, y), we show
that u and v satisfy the Laplace equation, meaning they are harmonic functions. Note that,
as we have mentioned in class, a holomorphic function in fact has to be in�nitely many times
di�erentiable, so there is no issue with di�erentiating the expressions below and commuting
derivatives.

By de�nition of a holomorphic function, u and v satisfy the Cauchy�Riemann equations:

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −∂v

∂x
.

We now compute the second derivatives of u:

∂2u

∂x2
=

∂

∂x

(
∂u

∂x

)
=

∂

∂x

(
∂v

∂y

)
=

∂2v

∂x∂y
.

Similarly, di�erentiating ∂u
∂y
:

∂2u

∂y2
=

∂

∂y

(
∂u

∂y

)
=

∂

∂y

(
−∂v

∂x

)
= − ∂2v

∂x∂y
.

Adding these two equations, we obtain:

∂2u

∂x2
+

∂2u

∂y2
=

∂2v

∂x∂y
− ∂2v

∂x∂y
= 0.

Thus, u satis�es the Laplace equation, ∆u = 0. By the same procedure, we di�erentiate v and
obtain: ∂2v

∂x2 +
∂2v
∂y2

= 0. Therefore, v is also harmonic, completing the proof.

5. Let f : C→ C be a holomorphic function. We express the Cauchy�Riemann equations in polar
coordinates (r, θ), where x = r cos(θ) and y = r sin(θ).

The standard Cauchy�Riemann equations in Cartesian coordinates are:

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −∂v

∂x
. (1)
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Using the chain rule, we can relate the coordinate derivatives in the (x, y) coordinate system
to those in the (r, θ) coordinate system:

∂

∂r
=

∂x

∂r

∂

∂x
+

∂y

∂r

∂

∂y
= cos(θ)

∂

∂x
+ sin(θ)

∂

∂y
∂

∂θ
=

∂x

∂θ

∂

∂x
+

∂y

∂θ

∂

∂y
= −r sin(θ)

∂

∂x
+ r cos(θ)

∂

∂y

so, solving for ∂
∂x
, ∂
∂y
:

∂

∂x
= cos(θ)

∂

∂r
− sin(θ)

r

∂

∂θ
,

∂

∂y
= sin(θ)

∂

∂r
+

cos(θ)

r

∂

∂θ
.

Applying these transformations to the Cauchy�Riemann equations (1):

cos(θ)
∂u

∂r
− sin(θ)

r

∂u

∂θ
= sin(θ)

∂v

∂r
+

cos(θ)

r

∂v

∂θ
,

sin(θ)
∂u

∂r
+

cos(θ)

r

∂u

∂θ
= − cos(θ)

∂v

∂r
+

sin(θ)

r

∂v

∂θ
.

Multiplying the �rst equation by cos(θ) and the second by sin(θ), then summing, we obtain:

∂u

∂r
=

1

r

∂v

∂θ
.

Similarly, multiplying the �rst equation by sin(θ) and the second by − cos(θ), then summing,
we get:

∂v

∂r
= −1

r

∂u

∂θ
.

These are the Cauchy�Riemann equations in polar coordinates.

6. Let f : C→ C be an entire function given by:

f(x+ iy) = u(x, y) + iv(x, y),

where the real part is given as:

u(x, y) = e(x
2−y2) cos(2xy).

We need to �nd v(x, y).

Since f(x+ iy) is entire, it satis�es the Cauchy-Riemann equations:

∂u

∂x
=

∂v

∂y
,
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∂u

∂y
= −∂v

∂x
.

First, we compute the necessary derivatives of u(x, y):

∂u

∂x
= e(x

2−y2) [2x cos(2xy)− 2y sin(2xy)] ,

∂u

∂y
= e(x

2−y2) [−2y cos(2xy)− 2x sin(2xy)] .

Using the �rst Cauchy-Riemann equation:

∂v

∂y
=

∂u

∂x
= e(x

2−y2) [2x cos(2xy)− 2y sin(2xy)] .

Integrating both sides with respect to y:

v(x, y) =

�
e(x

2−y2) [2x cos(2xy)− 2y sin(2xy)] dy + C(x)

=

�
e(x

2−y2)

[
∂

∂y
(sin(2xy))− 2y sin(2xy)

]
dy + C(x)

=

�
e(x

2−y2) ∂

∂y
(sin(2xy))dy −

�
e(x

2−y2)2y sin(2xy)dy + C(x),

where C(x) is an arbitrary function of x. Integrating by parts indside the �rst integral, we get

v(x, y) =e(x
2−y2) sin(2xy)−

�
∂

∂y

(
e(x

2−y2)
)
sin(2xy)dy −

�
e(x

2−y2)2y sin(2xy)dy + C(x)

=e(x
2−y2) sin(2xy) +

�
2y

(
e(x

2−y2)
)
sin(2xy)dy −

�
e(x

2−y2)2y sin(2xy)dy + C(x).

Note that the two integrals cancel out, thus:

v(x, y) = e(x
2−y2) sin(2xy) + C(x). (2)

To determine C(x), we use the second Cauchy-Riemann equation:

∂v

∂x
= −∂u

∂y
. (3)

Di�erentiating v(x, y) as given by (2):

∂v

∂x
=

∂

∂x

(
e(x

2−y2) sin(2xy) + C(x)
)
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=2xe(x
2−y2) sin(2xy) + e(x

2−y2) · 2y cos(2xy) + C ′(x)

=e(x
2−y2) [2x sin(2xy) + 2y cos(2xy)] + C ′(x).

In view of (3), this must be equal to −∂u
∂y
:

e(x
2−y2) [2x sin(2xy) + 2y cos(2xy)] + C ′(x) = e(x

2−y2) [2x sin(2xy) + 2y cos(2xy)] .

Canceling the common terms:

C ′(x) = 0 ⇒ C(x) = constant.

So the �nal expression for v(x, y) is:

v(x, y) = e(x
2−y2) sin(2xy) + C,

where C is an arbitrary real constant.

Thus, the function f(x+ iy) is:

f(x+ iy) = e(x
2−y2) [cos(2xy) + i sin(2xy)] + C,

or
f(z) = ez

2

+ C

(using the fact that cos(2xy) + i sin(2xy) = ei(2xy)).
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